Bacterial cell wall. MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis.
نویسندگان
چکیده
Peptidoglycan (PG) is a polysaccharide matrix that protects bacteria from osmotic lysis. Inhibition of its biogenesis is a proven strategy for killing bacteria with antibiotics. The assembly of PG requires disaccharide-pentapeptide building blocks attached to a polyisoprene lipid carrier called lipid II. Although the stages of lipid II synthesis are known, the identity of the essential flippase that translocates it across the cytoplasmic membrane for PG polymerization is unclear. We developed an assay for lipid II flippase activity and used a chemical genetic strategy to rapidly and specifically block flippase function. We combined these approaches to demonstrate that MurJ is the lipid II flippase in Escherichia coli.
منابع مشابه
Correction: The O-Antigen Flippase Wzk Can Substitute for MurJ in Peptidoglycan Synthesis in Helicobacter pylori and Escherichia coli
The peptidoglycan (PG) cell wall is an essential component of the cell envelope of most bacteria. Biogenesis of PG involves a lipid-linked disaccharide-pentapeptide intermediate called lipid II, which must be translocated across the cytoplasmic membrane after it is synthesized in the inner leaflet of this bilayer. Accordingly, it has been demonstrated that MurJ, the proposed lipid II flippase i...
متن کاملA Burkholderia cenocepacia MurJ (MviN) homolog is essential for cell wall peptidoglycan synthesis and bacterial viability.
The cell wall peptidoglycan (PG) of Burkholderia cenocepacia, an opportunistic pathogen, has not yet been characterized. However, the B. cenocepacia genome contains homologs of genes encoding PG biosynthetic functions in other bacteria. PG biosynthesis involves the formation of the undecaprenyl-pyrophosphate-linked N-acetyl glucosamine-N-acetyl muramic acid-pentapeptide, known as lipid II, whic...
متن کاملLipid Flippases for Bacterial Peptidoglycan Biosynthesis
The biosynthesis of cellular polysaccharides and glycoconjugates often involves lipid-linked intermediates that need to be translocated across membranes. Essential pathways such as N-glycosylation in eukaryotes and biogenesis of the peptidoglycan (PG) cell wall in bacteria share a common strategy where nucleotide-sugars are used to build a membrane-bound oligosaccharide precursor that is linked...
متن کاملMurJ and a novel lipid II flippase are required for cell wall biogenesis in Bacillus subtilis.
Bacterial surface polysaccharides are synthesized from lipid-linked precursors at the inner surface of the cytoplasmic membrane before being translocated across the bilayer for envelope assembly. Transport of the cell wall precursor lipid II in Escherichia coli requires the broadly conserved and essential multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) exporter superfamily member MurJ. He...
متن کاملBioinformatics identification of MurJ (MviN) as the peptidoglycan lipid II flippase in Escherichia coli.
Peptidoglycan is a cell-wall glycopeptide polymer that protects bacteria from osmotic lysis. Whereas in gram-positive bacteria it also serves as scaffold for many virulence factors, in gram-negative bacteria, peptidoglycan is an anchor for the outer membrane. For years, we have known the enzymes required for the biosynthesis of peptidoglycan; what was missing was the flippase that translocates ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Science
دوره 345 6193 شماره
صفحات -
تاریخ انتشار 2014